问题: 证明 $$ \zeta(z) =\prod_p \frac{1}{1-p^{-z}}$$




解答: ( ID: 匿名游客[匿名] )

$$ \zeta(z)=1+\frac{1}{2^z}+\frac{1}{3^z}+\frac{1}{4^z}-\frac{1}{5^z}+\ldots \ \ \ \star $$ (\(\star \)) \(\times \frac{1}{2^z}\) 得 $$ \frac{1}{2^z} \zeta(z)=\frac{1}{2^z}+\frac{1}{4^z}+\frac{1}{6^z}+\frac{1}{8^z}+\frac{1}{10^z}+\ldots \ \ \ \star \star $$ (\(\star \)) -(\(\star \star \)) 得 $$ \left(1-\frac{1}{2^z}\right) \zeta(z)=1+\frac{1}{3^z}-\frac{1}{5^z}+\frac{1}{7^z}+\frac{1}{9^z}+\frac{1}{11^z}+\frac{1}{13^z}+\ldots \ \ \ \star\star\star $$ (\(\star \star \star \)) \(\times \frac{1}{3^z}\) 得 $$ \frac{1}{3^z}\left(1-\frac{1}{2^z}\right) \zeta(z)=\frac{1}{3^z}+\frac{1}{9^z}+\frac{1}{15^z}+\frac{1}{21^z}+\frac{1}{27^z}+\frac{1}{33^z}+\ldots \ \ \ \ (4) $$ (\(\star\star\star \)) - (4)得 $$ \left(1-\frac{1}{3^z}\right)\left(1-\frac{1}{2^z}\right) \zeta(z)=1-\frac{1}{5^z}-\frac{1}{7^z}+\frac{1}{11^z}+\frac{1}{13^z}+\frac{1}{17^z}+\ldots $$ 不断重复最终可以得到 $$ \ldots\left(1-\frac{1}{11^z}\right)\left(1-\frac{1}{7^z}\right)\left(1-\frac{1}{5^z}\right)\left(1-\frac{1}{3^z}\right)\left(1-\frac{1}{2^z}\right) \zeta(z)=1 $$ 则 \[ \zeta(z)=\frac{1}{\ldots\left(1-\frac{1}{11^z}\right)\left(1-\frac{1}{7^z}\right)\left(1-\frac{1}{5^z}\right)\left(1-\frac{1}{3^z}\right)\left(1-\frac{1}{2^z}\right)} \] \[ =\left(\frac{1}{1-2^{-z}}\right)\left(\frac{1}{1-3^{-z}}\right)\left(\frac{1}{1-5^{-z}}\right)\left(\frac{1}{1-7^{-z}}\right)\left(\frac{1}{1-11^{-z}}\right) \cdots \] 因此 \[ \zeta (z) =\prod_p \frac{1}{1-p^{-z}} \]